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ON STATISTICAL INVESTIGATION OF DYNAMIC SYSTEMS
~USSR-

[Following is a translation of an article by L. Pontryagin,
A. Andronov, and A. Vitt, Scientific-Research Institute of
Physies, in the Russian-language periodical Zhurnal FEksperi-
mental 'noy i Teoreticheskoy Fiziki (Journal of Experimental
and Theoretical Physics), Vol. 3, 1933, pages 165-180.7

1. Statement of the Problenm

Assume that we have a dynamic system defined by n differential
equations of the first order [See lote/
b ey o Praa
¢ ar ol X‘g (% ; ;‘B‘E, PR wn):

................... 4
R e S, SO -

iézl,2p..n.

(1)

(Note: We shall be restricted to autonomic systems, i. e. systems such
that their differential equations do not depend on time explicitly. A
similar investigation can be made of non-autonomic systems.)

These equations, for given initial conditions, uniquely define
the behavior of the point in phase space that "represents" our system,
which is subject to equations (I), according to the laws of the case
(various probabalistic hypotheses are possible here).

The introduction of such "random" perturbations has two pur-
poses, which are connected with the two problems posed in this article.

a. The First Problem. It is certain that the processes in real
dynamic systems are not completely described by lifferential equations
of the form of (I); these equations define the motion of a system only
in basic or approximate form without consideration of random shocks
and perturbations. Under favorable conditions, experiment can detect
several consequences of the existence of such random shocks. Hence,
there arises the following problem: explain the general behavior of a
system in the presence of random perturbations and, in particular, pro-
vide a theoretical framework that will permit one to approach the
explanation of the character or "random perturbations" in real dynamic
systems from the experimental data. This problem was posed several
years ago by L. I. Mandel'shtam as the immediate task of the theory of
self.oscillations.

b. The Second Problem. Until the present time in the general
theory of motions, for example, in Birkhoff's theory, all investigations,
including probabalistic studies, have been concerned with the concept

s
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of the motion of the image point along a specific phase trajectory.
Random perturbations, about which we have just spoken and whose possi-
bility has always been considered in dynamics when stability in Lya-
punov's sense is being studied, transfer the image point from one
trajectory to another. Hence there naturally arises the following
problem: supplement Birkhoff's general theory of motions with consid-
erations related to accounting for random perturbations, in particular,
separate from the set of motions of a dynamic system those motions
which have the greatest probability of occurrence in the presence of
such perturbations.

In this statement of the problem, random perturbations are only
an apparatus in the investigation of the character of the motions
defined by equation (I).

Although we have not solved either the first or second prob-
lems in any general fashion, it nonetheless seems to us that the fol-
lowing considerations are a certain step forward in these directions
and, possibly, are of some general interest, in addition to the appli-
cations that may be found in the theory of self-oscillations. In our
opinion, it is also interesting to study the relation of the items dis-
cussed below to statistical mechanics, although it is not our intention
to do so in the present article.

2., Hguation for the Density of the Probability Distribution

Let us first consider the simplest case, where n = 1 and the
phase space is a straight line 0X. In place of system (I), we obtain
the one equation

| Be=x@. (1)

- As we have already mentioned, one can be given various probaba-
listic hypotheses relative to the random perturbations. Let the perturb-
ations occur in the following manner: after each time interval®T, the
phase point instantaneously jumps a distance a along a random direction
(the directions right and left are equally probably), then moves for
seconds in accordance with the equations of motion, then jumps again,
ete,

By virtue of the fact that the motion of the image point is
defined not only by equatlon (1) but also by probabalistic laws, it is
impossible to examine x as a definite function of t7 and possible only
to speak of the probability that our image point is located in some one
region of the phase space.

It is easy to see an analogy between our problem and the so-
called "problem of the motion of an absolutely drunk man," which was
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apparently first studied by Rayleigh [See Not§7 in connection with
questions of the addition of osecillations. By analogy, our problem
could be termed "the problem of the swimming of an absolutely drunk
man in a channel in which there are regular currents." (Note:
Rayleigh, Theory of Sound, Vol. 1, Section 42a)

The necessary probabalistic examination is comparatively easily
derived in the limiting case, if we assume that a tends to zero along
with ¥ , whole at the same time azfﬁ'tends to a finite limit which
characterizes the intensity of the perturbations.

In the limit we can obtain a partial differential equation

L T4 g e =4 @ -

L2

which is satisfied by the density of the probability distribution

£(t, x) /See Note 1l/. In Rayleigh's case, which we have just men-
tioned, i. e. for X(x; = 0, equation (2) becomes a simple equation of
heat conductivity. We have made a very particular assumption about the
character of the random perturbations. In the more general case we can
assume that we have a determined motion of the image point according to
equation (1) upon which is superimposed a random process subject to
some statistical law and dependent upon the location of the image point.
If we assume that this statistical process has no inherent directivity,
and that the random effects are such that the probability of large per-
turbations approaches zero with sufficient rapidity with decrease in
time'€, then in place of equation (2), we shall obtain a somewhat more
general equation

=

(3)

where b(x), a coefficient that characterizes the degree of dissipation
of the statistical process, can be defined as Jig, ( 1/1? ), where £2

is the mean square of the digplacement during time T under the action
of the statistical process [See Note 27, According to the sense of the
concept of the probability density, we are only interested in solutions
of equation_(3) for which f(t, x) P/ 0, and which are normed, i.e,

for which [See Note 37

(%)

To find a specific solution to equation (3), it is sufficient to know
the function £(t, x) for t = 0, i. e. to have the initial probability
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distribution. If we wish to study the behavior of the image point,
which has a specific position $ at the initial moment, then we must
find a distribution function f£(t, x) such that in the-limit t = O this
function will vanish at all points excepting £ and, additionally, will
satisfy condition (4). The function thus defined depends, of course,
on the point & ; we shall denote it by p(§, t, x); p(§, t, x)dx

is the probability that a random point, located in position £ at the
moment t = 0, will move to a position between x and x + dx during time
t.

(Note 1: This partial differential equation and its generalizations,
about which we shall speak below, are well known from the works of
Rayleigh, Fokker, Smolukhovskiy, etc. See, for example, the biblio-
graphy in Zernicke, Handbuch der Physik, Band III, Page 457. We note
that, if £(t, x) is the density of the probability distribution, then
the probability of finding the image point at moment t in region G
equals W(t, G) = [ £(t, x)dx.)

G
(Note 2: Let p(x,C, y)dy be the probability that the image point,
located at position x, will be virtue of the random process arrive at
a position between y and y + dy during the interval 4 . Then

+00
b(x) = %_i:a %§Mp<x,f’, ¥) (y-x)2dy.

Since we have assumed that the statistical process is not directional,
then
+00

lin S (%, %, ¥)( - x)dy=0.
10

The rapidity with which the probability of large deviations decreases
with decrease in ¥ is characterized by the fact that

+00 .
lim * S p(x,%, ¥)ly - x13dy = 0.
t0 % Y,

(Note 3: Under certain general assumptions relative to equation (3),
one can assert that if £(0, x) is everywhere positive and normed when
t = 0, then these conditions will be satisfied for all t » 0 as well.)

It may occur (systems for which this is true will be our chief
interest) that any unstationary density distribution f(t, x) in the
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limit t =% will tend to a definite limit function f(x). To find the
limiting stationary distribution, we must set 9f/9 t - 0 in equation
(3) and examine the equation

(5)

which we shall call the stationary case of the Fokker equation. The
solution of equation (5) which does not depend on the initial condi-
tions will best reflect the properties of the dynamic system (I).
Therefore, we shall henceforth be concerned with the study of this par.
ticular equation and its generalization for the case n® 1. As regards
equation (3), although it is interesting from the point of view of the
problem of the character of perturbations in real physical systems, we
shall not deal with it directly; in general form it is very difficult
to study; and a solution can be found only in a small number of partic-
ular cases [See Note 1/. We note that, and this will be useful later
on, equation (3) can be given another purely statistical treatment in-
stead of the treatment as the result of the superposition of a statis-
tical process on a dynamic process, as we have just done [See Note §7.

(Note 1: See R. von Mises, Wahrscheinlichkeitsrechnung, Section 517,
1931; A. Kolmogorov, Math, Annalen, B, Vol. 104, Page 454, 1931)

(Note 2: Let the image point be acted upon only by a statistical
process and let there be a function p(& , t, x) such that p(§, t, x)dx
is the probability that the image point will move from 1z specific pos-
ition§ to a position between x and x + dx during time t. Then it can
be shown that under certain assumptions relating to the function p and

under the conditions:
400

1ip & p(§, t, x)(x - &)dx = X( §);
p(€, t, x)(x - §)%x = o(£);

}‘E,‘i;b% S p(§ ., t, x)‘x -{de = 0

the function_p(& , t, x), as a function of t and x, satisfies equation
(3). It is easy to see that the distribution in general form f(t, x)
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will then also satisfy this egquation, since
+00

£(t, x) = S £(8)p( €, t, x)d&,

=9
where £(§ ) is the distribution for t = 0.)

Until now we have assumed that we have one differential equa-
tion of the form of (1) and that the corresponding phase space is a
straight line., In the general case, instead of the equation (1), we
shall have the system (I), and instead of equation (3), the equation

(I1)

where biJd X1y, X2yeee, Xp, again characterize the statistical process
[See Note/. The coordinates X7, X2,..., X, will be considered as

Cartesian coordinates in Buclidian space.

n

(Note:

S pie

whereby p(xy, Xpseee, X3 %, Yy» Toseens yn) dyy dys ... dy, is the
probability that the image point, located st X1, XZ,..Q, Xy Wlll move

by virtue of the random process to a position between y, and yy + dyl,

y2 + dyp, ete., in time'¢. The corresponding correlations for the
first and third moments can be written by analogy with those for equa-
tions (3) (see note 3 on page 7).)

Thus is we know equations (I), which characterize the dynamic
system, and the functions bld, which characterize the random perturb-
ations, we can then write equatlon (II). We shall call equation (II)
the Fokker equation corresponding to system (I) [See Note% It is
evident that we are interested in the non-negative and normed solutions
of this equation. The stationary case of this equation is obtained
under the assumption, as before, that 3f/ Ot =

Lo7f), (I11)




Let us now return to the problems stated in section 1, having obtained
equations (II) and (ITI). (Note: It is given in this form in Kolmo-
gorov, 1. c., p. 415. [sic/)

From the point of view of the first problem, the_problem_of
studying random perturbations in real dynamic systems [See Not§7, we must
seek those b*J that will best describe the results of experiment. Here,
blJ are given by the physical system under study. (Note: We in no
way claim that any random effects in real dynamic systems can be studied
within the framework of the Fokker equation)

From the point of view of the second problem, the study of the
dynamic system defined by equations (I) with the aid of equations (II)
and (III), and of these equations, equation (III), in particular, must
reflect the properties of system{I). Henceforth, we shall, for example,
study the behavior of the solutions of (III) in the limit biJ<$0 and
see how these solutions behave in dependence on the manner in which
blJ approach zero.

3. BEguation for the Mathematical Expectation for the Transition Time

In addition to the distribution function f(t, x), there are
other functions which are relevant to the behavior of a random point.

We shall first study these new functions in the simplest, one-
dimensional case, Let the phase space be a straight line 0X. Let
a random point, for which the corresponding density of the probability
distribution is described by the Fokker equation, move along this line
/See Not_7. (Note: In the following discussions we shall follow a
purely statistical scheme; see note on page 9).

Let us calculate the probability that a random point, located
initially (t = 0) at some point x along the segment ab, will leave this
segment within time t, crossing over (at least once)either point a or
b [See Note/.

{ote: We may also pose the problem of the probability that the random
point will leave the segment only by the right-hand (or left-hand) end
of the segment, or that it will not leave the segment. As is easily
seen, the equation remains the same; only the boundary conditions will
be changed.)

) We denote the probability sought by @(t, x) and study #(t +C, x)
Since at t = 0 the image point has a fixed position x, then at the
moment ' it has a probability density distribution p(x, ¢, i ). Since
the probability that a random point will leave the segment ab in a short
time interval % is very small, then, remembering the forthcoming limit
transition, we can disregard this probability and yrite

j— y S e e ek .

b
Pt+52)= [ (5B DA

e eeea

(6)
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Expanding ¢(t g) into a Taylor series, we find that e
e(t9= 9(t,a:)+%(t,a:)(£-~w}+m St 2} (E—aP 4+
+’ 5. 37'.:&? Q’Ta(ﬁ*"‘w}”*“"fpn

{
W(H—' @) =2(t w)f?(w,f Ddito(t, x)jp(x,v.i)(i———»a:)d5+

whence, according to (4)

|
+ 3‘?::(‘ 2) Jp(w, nHE—apd+ L, m—s—w—-wnj'ﬁ(z, 06— z&)ﬂd’-

Dividing by *f and going to the limit at ‘tﬁ 0, we can extend
the intervals that stand here to the entire straight line [See Note 17
After the transition to the limit, we obtain a artial differential
equation for the function @(t, x) [See HNote 2

I

e

3"’.*3'(9;) +*~b(.t‘) ___________ (7)

(Note 1: The validity of this follows from the condition imposed on
the third moment; see the note on page 9)

(Note 2: Equations (7) and (9) as well as their generalizations for the
case n » 1 were derived by L. S. Pontryagin)

Now let us find the initial and boundary conditions for @(t,x).
It is obvious that at the initial moment, @(0, x) = 0, if x, as was
assumed, lies on the segment (a, b). We shall also assume that @(t, a)
= @(t, b) = 1 for any t, since if a random point approaches a or b,
then it is natural to assume that the probability of its exit from the
segment (a, b) will approach unity.

- We now pose the question of the mathematical expectation of the
exit time M(x), i.e. the time necessary for the image point, initially
located at some point x of the segment (a,b), to leave that segment
through either point a or b, Since the probability that a random point
will leave within a time interval from t to t + dt is (B @ /Dt)dt,
then the desired mathematlcal expectatlon equals )

(8)

M(w)m

To obtain the differential equation that defines M, we differentiate
equation (5) with respect to t, multiply both its sides by t, and inte-
grate from 0 to @ wWe then have

e e i e g



(ote: (0, x) = 0, since by assumption x lies on the segment (a, b);
o(08, x) = 1, since this is the probability that a random point will
leave the segment (a, b) at some time, which is a certainty.)

I'he corresponding boundary conditions, as is easily seen, will
be

M(a) = 0; M(b) = 0.

In addition, for the meaning of the problem it is necessary that
M(x)) 0. We mention that, if we are interested in the mathematical
expectation for the transition time of a random point at position a
(agx), then we must find the solution to the problem just stated and
go to the limit at b-$p9.

The foregoing discussions can be easily generalized for the case
n)l. Let us assume a random point whose motion is described by the
Fokker equation for the general case. Let G be a certain region of
the corresponding phase space, let A be the boundary of this region,
and let i be a portion of this boundary.

We shall call 8 (t, x7, Xp,..., X,)the probability that a ran-
dom point, located at the moment t = 0 at the position X1y X2se00,Xp
in region G, will leave region G within time t, intersecting the portion
of the boundary ¥ upon leaving. As before, it is easy to find a par-
tial differential equation for the function @(t, X3, X3,..., X,):

(Iv)
with the following initial and boundary conditions:
@0, x1, X2ye005 Xpn) = 0 for all points lying within region G;
® (t, x3, Xp,e.., X,) = 1 for points which belong to the portion of
the boundary g¢ , and ¢(t, X7, Xp,..., xn) = 0 for points which belong
to the remaining portion of A.

If we wish to study the question of the departure of a random
point from region G through the portion of the boundary Of, not during
a specific time t, but for all time following the initial moment,

-9 -



then we have to go to the limit t = + 0°, In this case, as we did in
section 2, we must set lim (0@/9t) = 0. Consequently, the problem
is reduced to finding the solution®(xy, Xp,..., X,) of the equation

(Ive)
under the boundary conditions just discussed. If OCcoincides with 4,
the functions ¢g(t, x1, Xp,..., X,) andﬁ(xl, Xpyeoos xn) become unity
along the entire boundary A. In this case the equation (IV') is sat-
isfied by unity; this means that the probability that a random point will
leave the region G at some time and place equals unity.

In this case the equation for the mathematical expectation for
the exit time will have the form

B ik : e
X % %o aw,aw

where § (%X, X y+00, X ) 1S the corresponding solution of equation
(IV), and the"boundary conditions are M(xy, Xp,..., X,) on the entire
boundary ALSee Not§7. If Q@ coincides with A, then, as we know, Q(XI,
K0 o5 xn) = 1, and, consequently, equation (V) assumes the form

el e e e iy

]

M%7, Xoyneey Xo) = S £ 99 4
| . Mmyy %2 n) =) ta
vanishes at the boundary A.)

L4, The Case of One First.Order Equation

a. oStationary Distribution of Probability Density. As we
already know, a stationary distribution is a non-negative normed solu-
tion of the equation

&l xer— Lo@n)=o s

In the general case one cannot count on the existence of a
stationary solution. The most natural conditions under which a sta-
tionary solution can be expected, and which we shall henceforth
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consider to be satisfied, are as follows: i) c" ¥ b(x) Y c') 0;
11i)X(x) is negative for sufficiently large positive x and positive for
sufficiently large negative x, being in either case greater in modulus
than a certain constant g) 0. The first integration of equation (5)
gives

 X@)f— % 4 @)= 0,

- e e bttt e S e (10)

If conditions (i) and (ii) are satisfied and if f(x) is not
negative: and normed, then C; = 0 [See Note_/.

(Note: Namely, it can be shown that under these conditions f and its
derivative in the limit x=»90 decrease so rapidly that the left-hand side
of the equation approaches zero, and, consequently, C1 = 0.)

Integrating a second time, we find

ey edm c ‘ -
f@) = e ] (11)

g

3 b(E)

and C is a new integration constant or normalization coefficient. wWe
notice, first of all, that where b(x) is constant, the maxima (or min-
ima) of our solution coincide with the points of stable (or unstable)
equilibrium for the original dynamic system described by equation (1).
In fact, since e? is a monotonic function, the maxima and minima of

our solution coincide with those of the function @ (x); as far as this
latter function is concerned, the fact in question is very easily estab-
lished for it. '

We shall now study the solution under the assumption that b(x)
decreases uniformly. For this we represent b(x) in the form b(x) =
Aa(x), where q(x) (q" % q{x) » q'>0) is an invariant function, and N
is a parameter which we shall cause to approach zero.

The solution is then written in the form

where 1‘~ Q
b (x) =2&Xl£) da,

(12)

where

(13)

w 11 -
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Let us suppose that there exists a unique point (let this be the coor-
dinate origin) at whichW(x) reaches an absolute maximum. It can be
shown that in the 1imith=¥0, f(x) everywhere, wxcept at the point zero,
approaches zero, and at the point zero, approaches infinity. In this
case, in fact, one can evaluate C(A) for sufficiently small'A:

}( - Gl

where n is a positive_even integer, and s(N\ ) is confined within posi-
tive 1limits [See Note/.

(Note:

Let h be an extremely small positive number. It can be shown easily

that by virtus of the properties of ¥ ( E ) the last two integrals are

infinitely small in comparison to the first integral in the limit W7 0.
In a sufficiently small interval (~h, +h) the functiond(x)

can be approximately represented in the form -kxB, where n is a posi-

tive even integer, 1i. e,

where k') k">0.
In the same interval we thus have

(4)

Since in the equality

we can again (as we have just done) disregard the second summand in the
right-hand side, and since

where p(k) is independent of A , then by virtue of (A) the assertion just
made follows.)
Consequently,

& |
fl@)=s o (14)

#

@
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If x = 0, the numerator of this expression decreases much more rapidly
when A0 than does the denominator, and the entire expression tends to
ZEero.

If, on the other hand, x = 0, the numerator is independent of

A, and the entire expression consequently tends to infinity.

Knowing the function X(x), we can choose the function q(x)
in such a way that the absolute maximum of ¥ (x) occurs at any of the
points of stable equilibrium of equation (1). The stationary distri-
bution will tend to vanish everywhere in the limit \= 0, with the excep-
tion of that point of stable equilibrium at which ¥ (x) reaches an
absolute maximum,

It whould be noted that this is not a local property of the given
stable point of equilibrium, i. e, it may happen that at a locally more
stable point (i. e. where [X'(x)] has its greatest value) the function

(x) does not reach an absolute maximum even if b(x) is constant.

Let us examine a pair of simple examples of stationary distri-
bution.

Example 1.

pie

gl

(15)

where D is a constant.

In this case the phase space is an infinite straight line with
a single equilibrium state x = 0 (see Fig. 1). This equilibrium state
is stable. Conditions (i) and (ii) (see page 17) are satisfied. The
function x = Ce” serves as a solution to the dynamic equation. If
X = x0 when t = 0, then the solution x - X e~kt is

(16)

and also

(17)

3

We have obtained an ordinary Gaussian distribution (Fig. 2)
which is the more diffuse, the stronger the perturbations are and the
greater D is, and which is the more compact, the greater k is and the
greater the stability of the equilibrium position is 7/See Note./

(Note: This example is well known. See, for example, R. von Mises,
Wahracheinlichkeitsrechnung, Section 517, 1931.)
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Example 2.

S AW e ® e

'fz mkw{d‘«’_fgzﬁk k >

(18)

where D is a constant.
In this case the phase space is an infinite straight line with

three equilibrium states: x =0, x = a, x = -a-{Fig. 3). Of these,
the state x = 0, x = a, x = -a (Fig. 3). Of these, the state x = 0
is unstable, while x = a and x = -a are stable. Condltlons (1) and

(11) are satisfied, The function x2 = a%/(1 + C'e-282kl) gerves as
the solution of the dynamic equation. If x = X, when t = 0, then

We obtain a stationary distribution with two maximé'(k = 43 ans x = -a)
and one minimum x = 0 (Fig. 4).

b, Mathematical Expectation for the Transition Time.

Let us calculate for the one-dimensional case in question the mathe-
matical expectation M,(x) for the timg of transition of the image point
from a position x to a position g (g ( As has been shown, M(x)
satisfies the equation

2 L)

(9")

We must find a solution to this equation under the conditions that M(q)
= 0 and that the solution of interest to us increases in the slowest
possible fashion in the limit x 960 . The derivative of the general
solution of equation (9') has the form

where
¢ (x) =2 g ifg; dE

It is evident that with inecrease in x, M(x, g) also increases,
and consequently, ij 0. But since we are interested in the solution
that grows in the slowest manner, C = 0. Consequently [See Note,/
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(21)

whence, by integrating and considering that M(g) = 0 for x = q, we
find that

(22)
90
(Note: X(x) and b(x) must be such that Sé‘f’ eto(& )g is meaningful)

It is not difficult to see that the function

(23)

is the inverse of the mean velocity with which the point moves from
the position x to the position g from right to left. We also find that
the mathematical expectation M,(x) for the time of transition of the
image point from a position x to a position p (p)x) is represented

by the integral

(24)

and

(25)

is the inverse of the mean velocity with which the point moves from
position x to position p from left to right.

It can be shown that in the limit, for points that tend to zero,
this mean velocity tends to that velocity which is obtained from the
dynamic equation (1), if the direction selected (from x to g or from
X to p) coincides with the dynamic direction of motion, and tends to
zero, if the direction selected and the dynamic direction are opposed.

We shall give another pair of examples to illustrate the theory
presented; we shall consider the same cases for which we have just stud-
ied the stationary probability distribution.
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(26)

The mathematical expectation for the time of transition from
position x = 0 to position x = p (04; p) is

(27)

(28)

The mathematical expectation for the time of transition from
point x = -a to point x = p («a { p QK +a) is

(29)

5. The case of Two First-Order Equations

We shall limit ourselves to a few comments relating to the sta-
tionalry problem and to one example.
If the dynamic system is described by the equations

(30)

then the proﬁability distribution density in the stationary problem
is subject to the

&gﬂ]
o e . (31)

We are interested in the non-negative solution to this equation
whose integral, taken over the entire plans, equals unity, i. e.
-i—w +m i
I [ f(wm)dwxdwwl-

e e
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The question of when equation (31) has such 2 normed solution remains
unexplained, If b*J(x], x2) are bounded from abovs and from below,

i. e. if O c'é‘bij <c", then one would expect thai such a solution
exists when an infinitely remote point of the plane is completely
unstable for the system (30). The qualitative aspects of the solutions
of system (30) are well known from the works of Poincare and others
[See Notg7. The singular points, limit cycles, and separatrices are
the notable motions which are the definitive elements of such a system,
What is the role of these motions from the point of view of eguation
(31), from the point of view of a statistical study of the dynamic sys-
tem? One would expect that there would be maxima of the function f(xl,
X5) near the stable singular points, minima near completely unstable
points, rises in the character of the shafts near the stable limit
cycles, etc. What happens when the perturbations approach zerof Which
solutions are then the most probable? We cannot give as exhaustive
answers to these questions as we did in the case of n = 1. (Note:

H. Poincare, Oeuvres, Vol. I, Paris, 1928)

Proceeding from the assumption that the solution in which we
are interested does exist, we can prove the following statement, the
proof of which we do not give here.

Let a be a certain point of the phase space., If either 1) a
cycle can be drawn through a without touching, or 2) a lies on an un-
stable 1limit cycle, or 3) a is an unstable focus or an unstable node,
then there exists a small neighborhood g of the point a which is such
that

(32)

where f(x1, Xp; )\) is a stationary distribution, and Ais a parameter
which characterizes the magnitude of the perturbations {le(xl,xz) =
Agtd(xy,xp) } . Hence it follows that in the limit A\=»0 a random point
with a probability that is &5 close to unity as desired is located in
an arbitrarily small rneighborhood of the stable_foci and nodes, of the
stable 1limit cycles, separatrices and saddles [See Notg7. Evidently,
one can create here, just as was the case for n = 1, an absolute maxi-
mum of the probability in the neighborhood of any »f these motions (in
the limit A90) by the choice of the proper qtJ(xy,xp). (Note: One
can give examples where a random point in the limit A-% 0 with a proba-
bility of unity falls in the neighborhood of a stable node, stable focus,
or stable 1limit cycle; the role of the saddle has not been completely
explained. )

In conclusion, we shall examine one simple example which clearly
illwstrates the distribution of the probability density in the two-
dimensional case, Let the perturbations be constant and isotropic
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(b12 = 0, b1l = b22 = b,) [See Note/. Then equation (31) assumes the
simple form

(33)

where

(34)

As a characteristic example we now select a system of equations (34)
which will have an unstable infinity, a stable limit cycle, and an un-

stable singular point at the coordinate origin (Fig. 5). Let us study
the particular case

e wmglm(m‘-f-#‘)}xm %

which is very easily solved by changing to the polar coordinates r and
(x =rcos@ ;y=rsing). (Note: Constant perturbations can
be made isotropic by a linear substitution of variables)
In fact, in polar goordinates we have

b m e e e mr

(35)

On the other hand, it is not difficult to write equation (33) in polar
coordinates with the functions R and { instead of X(x, y) and Y(x, y):

(36)

Since R and Q do not depend on ¢ in our example, we shall seek a
symmetrical solution of (36) which does not depend on ® . Such a solu-
Ation satisfies the equation

(37)

. :
whence, by integration, we find that
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Assuming that f and df/dr approach =zero sufficiently rapidly in the
limit r-% , we may set C = 0, whence

and

It is not difficult to picture the density of the probability distri-
bution obtained. We have a "crater-shaped" surface which has 2 minimum
at the point r = 0 and whose maxima form a circle lying above the limit
cycle r = 1 (Fig. 6). -

6, Some General Remarks

a. Remarks Concerning the First Problem.

1. A scheme with "shocks", or more accurately "jumps" on the
phase plane is an abstract scheme. It must be adapted to the condi-
tions of the problem [See Notg]. For example, the ordinary "shocks"
of classical mechanics are shocks or "jumps" in relation to velocities,
but are the absence of effect on the image point in relation to coordi-
nates. (Note: We have already mentioned that not all random effects
in dynimic systems can be studied in the framework of the Fokker equ-
ation.

2, In any derivation of the Fokker equation, it is assumed
that in any arbitrarily small interval of time there can be arbitra-
rily large "jumps", which, however, will have an extremely small proba-
bility. This corresponds to the fact that arbitrarily rapid motions of
the phase point are assumed. It is natural that this assumption is re.
flected in the result: namely, if we proceed from an initial Dirac
distribution (zero everywhere for t = 0, except at one point), we shall
obtain a solution at an arbitrarily small value of t which is non-zero
"everywhere. This solution, however, approaches zerc extremely rapidly
upon separation from the initial value. If we also assume that is real
cases arbitrarily rapid motions of the phase point are impossible, our
solutions will correspond to sufficient degree with reality, since they
suppose arbitrarily large perturbations only with a small probability.
As is known, similar things also occur in the usual theory of heat con-
ductivity.

3. We also note that it is not always obvious in an actual sys-
tem which effect should be considered statistical and which dynamic,
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For example, in the movement of a Brownian particle in a field of cone-
servative forces one must assume that the particle is also acted upon

by a regular force of friction, which is proportional to velocity and
which is generated by random collisions between the molecules. It is
reasonable to account for this friction in writing the dynsmic equations.

b. Remarks Concerning the Second Problem. We have studied
the behavior of the stationary solution under perturbations tending to-
ward zero for the case n = 1 and n = 2. In the more general cases, n)2,
it is natural to assume that by means of the proper limit transition
we can separate out some asymptotic stable (in the sense of approxi-
mationto orbits) sets of recurrent trajectories; however, there is no
doubt that such a2 1limit transition may also separate out other classes
of motions. All this relates to the essentially non-conservative cases
which do not have integral invariants. If the system assumes an inte-
gral invariant and if the pahse space of the system is closed, then
the picture of the behavior of the distribution function under perturb-
ations that tend to zero is essentially different. This poses an inter-
esting question: does not the stationary distribution tend to one of
the integral invariants of the system under perturbations that tend to
zero? The fact that the Fokker equation becomes the integral invariant
equation under perturbations that tend to zero leads to this idea.

A positive answer to this question could be the basis [See Notg]
of several of the conclusions of classical statistical mechanics which
have been based on a quasi-ergodic hypothesis. In fact, let R be the
phase space of a certain mechanical Hamiltonian problem, and let M be
the manifold of constant energy in it. Let M be closed. Since any
trajectory that intersects M lies wholly on M, a system of differential
equations is established on M. If this system of differential equa-
tions has a unique integral invariant, it is known: this is a phase
plane on M, Thus, for sufficiently small perturbations the probab-
ility that a random point will fall in a certain region is approxima-
tely proportional to the corresponding phase plane. (We will not now
examine the physical value of this basis, which is founded on assump-
tions of the statistical effects.)
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